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Abstract In composite interval mapping of quantitative

trait loci (QTL), subsets of background markers are used to

account for the effects of QTL outside the marker interval

being tested. Here, I propose a QTL mapping approach

(called G model) that utilizes genomewide markers as

cofactors. The G model involves backward elimination on

a given chromosome after correcting for genomewide

marker effects, calculated under a random effects model, at

all the other chromosomes. I simulated a trait controlled by

15 or 30 QTL, mapping populations of N = 96, 192, and

384 recombinant inbreds, and NM = 192 and 384 evenly

spaced markers. In the C model, which utilized subsets of

background markers, the number of QTL detected and the

number of false positives depended on the number of

cofactors used, with five cofactors being too few with

N = 384 and 20–40 cofactors being too many with

N = 96. A window size of 0 cM for excluding cofactors

maintained the number of true QTL detected while

decreasing the number of false positives. The number of

true QTL detected was generally higher with the G model

than with the C model, and the G model led to good control

of the type I error rate in simulations where the null

hypothesis of no marker–QTL linkage was true. Overall,

the results indicated that the G model is useful in QTL

mapping because it is less subjective and has equal, if not

better, performance when compared with the traditional

approach of using subsets of markers to account for

background QTL.

Introduction

Composite interval mapping (CIM; Zeng 1993, 1994;

Jansen 1992, 1993) is a very common method, if not the

most common method, used for mapping quantitative trait

loci (QTL) in plants. Although newer QTL mapping

methods, such as inclusive CIM (Li et al. 2007), multiple

interval mapping (Kao et al. 1999), and Bayesian LASSO

(Yi and Xu 2008) have been proposed, CIM remains a

popular and standard method because of its implementation

in software, such as QTL Cartographer (Wang et al. 2006),

PLABQTL (Utz and Melchinger 1996), R/qtl (Broman

et al. 2003), and GenStat (http//:www.vsni.co.uk). In sim-

ple interval mapping, the presence of a QTL at specific

positions between two adjacent markers is evaluated by

maximum likelihood or by regression-based tests (Lander

and Botstein 1989; Haley and Knott 1992). In CIM, simple

interval mapping is combined with multiple regression

given a set of background markers. These background

markers help account for the effects of QTL outside the

marker interval being tested. Results have shown that such

use of background markers as cofactors in CIM leads to

more precise estimates of QTL location compared with

simple interval mapping (Jansen and Stam 1994; Zeng

1994; Liu 1998; Cornforth and Long 2003).

No definitive rules, however, have been established for

determining the appropriate number of background mark-

ers to use in CIM. Having too few markers as cofactors in

CIM could lead to an insufficient amount of background

effects being captured, whereas having too many markers

could lead to model overfitting. Jansen and Stam (1994)
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proposed that the number of cofactors should not exceed

twice the square root of the size of the mapping population.

The standard method (Method 6) for selecting cofactors in

QTL Cartographer (Wang et al. 2006) first ranks all

markers according to their effects by stepwise regression.

The user then chooses a specific number of background

markers to include and a window size for excluding

cofactors. To illustrate, QTL Cartographer has a default

number of background markers equal to five and a window

size of 10 cM. If these default values are used, the software

then chooses as cofactors the five most important markers

from stepwise regression, with the condition that each of

the five background markers is at least 10 cM away from

the two markers that flank the interval being tested. Dif-

ferent numbers of background markers and window sizes

for excluding cofactors could lead to different results.

Developments since the 1990s have led to methods for

genomewide prediction of performance for quantitative

traits (Meuwissen et al. 2001). Unlike regression-based

procedures that predict performance via subsets of markers

with fixed effects, genomewide prediction does not involve

significance tests, but instead uses all markers in a random

effects model to predict performance. Genomewide pre-

diction would make the unresolved issue of the appropriate

number of background markers in CIM irrelevant. The use

of genomewide markers to correct for background QTL

effects, via partial least squares, has been previously pro-

posed by van Eeuwijk et al. (2000) and applied to empirical

data sets by van Eeuwijk et al. (2002), Bjørnstad et al.

(2004), and Vargas et al. (2006). However, rigorous com-

parisons of genomewide markers versus subsets of signif-

icant markers to correct for background QTL effects are

still lacking.

In this paper, I propose and evaluate a mapping proce-

dure that utilizes genomewide markers as random cofactors

for finding QTL and estimating QTL effects. Background

marker effects are obtained by ridge-regression best linear

unbiased prediction (RR-BLUP), which has emerged as a

simple, fast, and effective procedure for obtaining ge-

nomewide predictions in plants (Lorenzana and Bernardo

2009; Heffner et al. 2009; Lorenz et al. 2011; Asoro et al.

2011; Guo et al. 2012). I then present simulation results

comparing this new procedure with the traditional proce-

dure of using subsets of background markers in QTL

mapping. For ease of comparison, QTL detection in the

simulations relied on determining whether or not a QTL

was adjacent to a marker declared as significant, rather than

testing for a QTL at different points between two markers

in an interval mapping approach. For brevity, controlling

background effects through genomewide markers was

called the G model, whereas controlling background effects

through subsets of markers was called the C (for com-

posite) model.

Materials and methods

Mapping population, genetic models, and phenotypic

values

The genetic models in this study were largely based on

those in previous studies (Bernardo 2004; Bernardo and Yu

2007). Each simulation experiment comprised a combina-

tion of genetic model, size of mapping population, and

number of markers. The simulation experiments were

repeated 1,000 times. Each repeat differed in the location

of QTL and in the genotypes, genotypic values, and phe-

notypic values of the individuals. I wrote a Fortran program

to conduct the simulations and data analysis.

A simulated F1 generation, formed by crossing two

parental inbreds, was selfed eight times to form an

F2-derived mapping population of N = 96, 192, or 384

recombinant inbreds. The two parental inbreds differed at

NM = 192 or 384 codominant marker loci. The sizes of the

ten chromosomes (ranging from 128 to 241 cM) and of the

entire genome (1,749 cM) corresponded to those in a

published maize (Zea mays L.) linkage map (Senior et al.

1996). The genome was divided into NM bins that were

1,749/NM cM in size. A marker was located at the midpoint

of each bin.

The premise was to map major QTL for a less complex

trait that would tend to have several QTL with large effects

(Bernardo 2008), and the trait was controlled by L = 15

QTL with an entry-mean heritability of h2 = 0.80 or by

L = 30 QTL with an h2 of 0.70. The first parent had the

favorable allele at odd-numbered QTL and the less favor-

able allele at even-numbered QTL. The L QTL were ran-

domly located among the ten chromosomes without

considering the position of any marker, but with no two

QTL being located in the same position. The comple-

mentary QTL alleles from the two parents and the random

locations of the QTL resulted in random linkage phases

(coupling or linkage) between any linked pair of QTL. The

sizes of QTL effects followed a geometric series (Lande

and Thompson 1990). At the kth QTL, the genotypic values

were ak for the favorable homozygote, 0 for the hetero-

zygote, and -ak for the less favorable homozygote, where

a = (1 - L)/(1 ? L) as specified by Lande and Thompson

(1990). Dominance was therefore absent and epistasis was

likewise absent. The genotypic value of a recombinant

inbred was equal to the sum of its genotypic values across

all L QTL.

Phenotypic values were simulated as follows. First,

genetic variance (VG) in a given repeat of a simulation

experiment was calculated as the variance among geno-

typic values (i.e., h2 = 1.0) of 5,000 recombinant inbreds.

Phenotypic values were then simulated for the N = 96,

192, or 384 recombinant inbreds evaluated in eight
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environments with one replication in each environment.

Phenotypic values were obtained by adding a random

nongenetic effect to the genotypic value of each recombi-

nant inbred in each environment. The nongenetic effects

were normally and independently distributed with a mean

of zero and a variance of VE. The VE was scaled to achieve

a target entry-mean h2 of 0.70 (for L = 30 QTL) or 0.80

(for L = 15 QTL). Estimates of VE and VG were then

obtained from an analysis of variance of the simulated

phenotypic data. These variance component estimates were

used in subsequent G model analysis. The phenotypic data

for QTL analysis comprised the means across environ-

ments of the N recombinant inbreds.

C model

In the C model, the number of background markers used as

cofactors was NCF = 5, 10, 20, and 40 and the window

sizes were 0, 5, and 10 cM. For convenience, different C

models were denoted by the number of background

markers used, e.g., C-5 refers to a C model with NCF = 5.

In accordance with a procedure implemented in QTL

Cartographer, stepwise regression by forward selection was

used to rank the top 45 markers, which was the maximum

number of markers needed with NCF = 40 and the densest

marker distribution (NM = 384), and if the most important

markers are all adjacent but need to be excluded according

to the maximum window size of 10 cM. Assume these 45

markers are denoted by R1, R2, R3 … R45, where the

number after R indicates the ranking of the marker

according to priority as a cofactor. The marker with the

lowest p value based on the single marker linear regression

was first identified and designated as marker R1. Next, the

marker with the lowest p value, given that marker R1 was

also in the model, was identified and designated as marker

R2. Marker R3 was the marker with the lowest p value

given that markers R1 and R2 were in the multiple

regression model. The procedure continued until R45 was

identified.

The NCF markers were then chosen from markers R1 to

R45, excluding any of the R markers within the window

size from the marker being tested for its association with a

QTL. Suppose the QTL Cartographer defaults of NCF = 5

markers and a window size of 10 cM were used. Marker

M1, on chromosome 1 at the 5 cM position, was being

tested for its association with a QTL. Further suppose that

marker R1 was at the 30 cM position on chromosome 1,

marker R2 was at the 10 cM position on chromosome 1,

and markers R3–R6 were on other chromosomes and were

unlinked to M1. In this situation, markers R1, R3, R4, R5,

and R6 were chosen as the NCF = 5 cofactors for marker

M1, with marker R2 being excluded because it was less

than 10 cM from marker M1.

For the kth out of NM = 192 or 384 markers, multiple

regression was conducted with the kth marker and its set of

NCF cofactors in the model. Significance of the kth marker

was tested at both p = 0.0001 and 0.00001 based on a t test

of the regression coefficient for the kth marker. A false

positive was declared whenever the kth marker had a sig-

nificant regression coefficient, but no QTL was present in

either of the marker’s adjacent intervals (Doerge et al.

1994; Whittaker et al. 1996). A true QTL was declared to

have been detected whenever a QTL had a significant left

flanking marker, a significant right flanking marker, or had

both flanking markers as significant. The number of

markers with significant effects was recorded.

G model

Genomewide marker effects were calculated by RR-BLUP

as described by Meuwissen et al. (2001) and Bernardo and

Yu (2007). Marker effects were assumed random and the

variance of each marker effect in RR-BLUP was equal to

the estimate of VG (i.e., from analysis of variance of the

simulated phenotypic data) divided by NM.

Procedures for QTL analysis in the G model comprised

two steps. In the first step, multiple regression by backward

elimination was performed on a chromosome by chromo-

some basis (Bernardo 2004), after having corrected for

genomewide marker effects across all the other chromo-

somes not currently being analyzed for QTL. Suppose 53 out

of NM = 384 markers were found on chromosome 1. To

detect QTL on chromosome 1, the phenotypic data were first

adjusted for the RR-BLUP genomewide marker effects of

the (384 - 53) = 331 markers found on chromosomes 2–9.

With such per-chromosome adjusted data as the dependent

variable, backward elimination was used to allow the

examination of the full model (i.e., all 53 markers) for

chromosome 1. The significance level for retaining a marker

in the model was p = 0.0001 or 0.00001. These procedures

were then repeated for each chromosome. In the second step

(which was for obtaining final estimates of marker effects but

not for retesting the significance of effects), multiple

regression coefficients were obtained by jointly analyzing all

the markers found significant in the per-chromosome anal-

ysis. Unadjusted phenotypic data were used as the dependent

variable in this second step.

The G model therefore combined backward elimination

for a given chromosome and adjustment for genomewide

marker effects at the remaining chromosomes. To facilitate

comparisons with the C model, which did not involve

backward elimination, a G model involving single-marker

analysis (denoted by G-SM) was also used. For the kth

marker, the G-SM analysis involved adjustment of the

phenotypic data for the genomewide effects at the (NM - 1)

markers other than the kth marker, and single-marker linear
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regression with the adjusted data as the dependent variable.

Unlike the G model, the G-SM model therefore involved

adjustment of the phenotypic data for all other markers on

the same chromosome as the marker being tested for its

significance. A final estimation of marker effects (but not

retesting their significance) was done by multiple regression

with all the markers found significant in the single-marker

analysis. For the G model and G-SM model, the numbers of

false positives, true QTL detected, and significant markers

were determined in the same manner as for the C model.

Data analysis

For each experiment and for each QTL analysis model, the

numbers of false positives, true QTL detected, and signif-

icant markers were averaged across the 1,000 repeats.

Variances across the 1,000 repeats of an experiment were

used in z tests of the significance (p = 0.05) of differences

among the means for the C models, G model, and G-SM

model. To have a rough but global estimate of precision,

approximate least significant differences (LSD) were

obtained using the mean variance across the C, G, and

G-SM models.

Control of type I error rate

Simulations were conducted to determine the extent to

which the G, G-SM, and C models controlled the type I

error rate. The simulations were conducted for the 15 QTL,

h2 = 0.80 genetic model with the restrictions that (1) all 15

QTL were located on chromosome 1 and (2) p values

associated with tests of the null hypothesis in the G, G-SM,

and C models were obtained for markers on chromosomes

2–10. Such simulations therefore satisfied the conditions

that the null hypothesis of no linkage with QTL was true

for all the markers on chromosomes 2–10, and that VG was

greater than zero (i.e., VG = 0 if no QTL were simulated)

for RR-BLUP in the G and G-SM models. Simulations

were conducted for the same values of N, NM, and NCF as

previously indicated. Given that the p values are expected

to follow a uniform distribution if the null hypothesis is

true (Murdock et al. 2008), the Kolmogorov–Smirnov test

(p = 0.01) was used to determine if the empirical p values

followed a uniform distribution. The simulations were

repeated 200 times and the frequency of non-uniform dis-

tributions of p values was determined.

Results

In the C models, which utilized subsets of NCF background

markers, the ratio between the number of true QTL

detected (NTQ) and the number of false positives (NFP) was

highly dependent on the window size used. Consider a trait

controlled by L = 15 QTL with an entry-mean heritability

of h2 = 0.80, a number of markers of NM = 384, a popu-

lation size of N = 384, and a significance level of

p = 0.00001 for declaring a significant QTL. When the

window size was 10 cM, NFP (which ranged from 16.9 to

18.1) exceeded NTQ (which ranged from 8.9 to 10.9) across

NCF values of 5–40 (results not shown). When the window

size was reduced to 5 cM, NTQ ranged from 8.5 to 10.5,

whereas NFP was drastically reduced, ranging from 3.6 to

7.6. When the window size was 0 cM (i.e., background

markers were included as cofactors regardless of their

proximity to the marker being tested for its association with

a QTL), NTQ ranged from 8.4 to 9.1, whereas NFP was

further reduced to 0.4–5.5. The same general trend was

observed for other population sizes, for a less stringent

significance level of p = 0.0001, and for a trait controlled

by L = 30 QTL and with h2 = 0.70. Given the inferiority

of the C models with window sizes greater than 0 cM, only

the results from the C models with a window size of 0 cM

are presented in the rest of this article (including Tables 1,

2; Fig. 1).

In the C models, the appropriate NCF depended on the

size of the mapping population, with fewer background

markers being more suitable for smaller N and more

background markers being more suitable for larger

N. When the mapping population was small (N = 96), the

C-40 model (i.e., with NCF = 40) led to NFP values that

exceeded NTQ regardless of NM and of the number of QTL

controlling the trait (Table 1). With N = 96 and

NM = 384, the C-20 model led to NFP values that often

approached or exceeded NTQ. In contrast, when the map-

ping population was large (N = 384), the C-5 model led to

NFP values significantly higher than those with the C-10,

C-20, and C-40 models, but with no gain in NTQ.

For a given simulation experiment, a less stringent sig-

nificance level (p = 0.0001 instead of 0.00001) led to

higher values of NTQ, NFP, and number of significant

markers (Table 1). The number of QTL controlling the trait

had little effect on both NTQ and NFP: for a given combi-

nation of N, NM, and model for QTL analysis, differences

in L led to only small differences in both NTQ and NFP.

Consider a moderate population size of N = 192 and a

moderate number of markers of NM = 192. With the G

model and a significance level of p = 0.00001, NTQ was

8.2 with L = 15 QTL controlling the trait and was 8.0 with

L = 30 QTL (Table 1). Likewise, NFP was 1.4 with L = 15

and 0.9 with L = 30. Given the consistent effects of the

significance level used and the minimal effects of the

number of QTL on both NTQ and NFP, the results for each

of the C, G, and G-SM models were pooled across

significance levels and L, and are presented in Fig. 1.
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Table 1 Numbers of true QTL detected (NTQ), false positives (NFP), and significant markers for the G, G-SM, and C models (with a window size

of 0 cM) for detecting QTL

Model Significance level 15 QTL, h2 = 0.80 30 QTL, h2 = 0.70

True QTL False positives Significant markers True QTL False positives Significant markers

N = 96, NM = 192

G 0.0001 6.5 3.5 9.7 5.2 1.6 6.3

G 0.00001 5.6 1.8 7.2 3.8 0.8 4.2

G-SM 0.0001 4.9 1.8 7.5 2.1 0.2 2.2

G-SM 0.00001 3.6 0.7 4.7 1.0 0.1 1.0

C-5 0.0001 3.7 0.3 3.8 2.4 0.4 2.5

C-5 0.00001 2.9 0.2 2.9 1.5 0.2 1.5

C-10 0.0001 4.6 0.7 5.1 3.4 0.8 3.8

C-10 0.00001 3.7 0.3 3.9 2.4 0.4 2.5

C-20 0.0001 5.7 2.6 8.1 5.2 2.6 7.3

C-20 0.00001 4.8 1.4 6.0 3.9 1.5 5.0

C-40 0.0001 7.3 12.4 19.7 8.6 10.8 19.0

C-40 0.00001 6.6 9.1 15.6 7.2 8.0 14.8

LSD (0.05) 0.14 0.17 0.23 0.16 0.14 0.21

N = 192, NM = 192

G 0.0001 9.1 2.8 11.9 9.7 1.7 10.5

G 0.00001 8.2 1.4 9.5 8.0 0.9 8.1

G-SM 0.0001 8.1 3.3 13.1 6.3 0.6 6.7

G-SM 0.00001 6.9 1.4 9.5 4.2 0.2 4.1

C-5 0.0001 6.1 0.5 6.6 4.8 0.4 4.7

C-5 0.00001 5.3 0.2 5.3 3.7 0.2 3.4

C-10 0.0001 7.0 0.3 7.0 6.2 0.5 6.0

C-10 0.00001 6.1 0.1 5.9 4.7 0.2 4.4

C-20 0.0001 7.3 0.7 7.8 7.1 0.8 7.2

C-20 0.00001 6.2 0.3 6.3 5.5 0.4 5.3

C-40 0.0001 7.4 2.6 9.9 7.8 2.3 9.4

C-40 0.00001 6.3 1.1 7.2 6.0 1.0 6.4

LSD (0.05) 0.13 0.11 0.19 0.19 0.08 0.18

N = 384, NM = 192

G 0.0001 11.1 1.3 12.9 14.2 1.2 14.3

G 0.00001 10.4 0.6 11.1 12.4 0.6 12.0

G-SM 0.0001 10.5 4.1 17.1 12.2 1.1 13.6

G-SM 0.00001 9.5 1.8 13.2 9.9 0.4 10.1

C-5 0.0001 8.8 2.0 12.2 9.2 1.0 10.4

C-5 0.00001 7.8 0.9 9.5 7.4 0.4 7.4

C-10 0.0001 9.5 0.3 9.8 10.3 0.4 9.8

C-10 0.00001 8.7 0.1 8.6 8.9 0.2 8.2

C-20 0.0001 9.6 0.3 9.9 11.3 0.4 10.6

C-20 0.00001 8.5 0.1 8.4 9.4 0.2 8.6

C-40 0.0001 9.0 0.6 9.6 10.5 0.6 10.2

C-40 0.00001 7.8 0.2 7.9 8.4 0.2 7.7

LSD (0.05) 0.13 0.11 0.19 0.19 0.07 0.19

N = 96, NM = 384

G 0.0001 5.5 5.3 10.7 4.2 3.2 7.1

G 0.00001 4.8 3.2 7.9 3.1 1.8 4.7

G-SM 0.0001 2.6 1.0 4.4 0.6 0.1 0.7
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In Fig. 1, the results for C-40 with N = 96 were excluded

because, as indicated earlier, the C-40 model was inap-

propriate with a small mapping population. The results for

C-5 with N = 384, NM = 384, p = 0.0001, and L = 5 led

to an NFP value (9.6, Table 1) that exceeded the NTQ value

(9.3) and the results for this simulation experiment were

likewise excluded from Fig. 1.

The NTQ values increased as N increased (Fig. 1). At a

given N, an increase in NTQ was generally accompanied by

an increase in NFP. Increasing the number of markers from

Table 1 continued

Model Significance level 15 QTL, h2 = 0.80 30 QTL, h2 = 0.70

True QTL False positives Significant markers True QTL False positives Significant markers

G-SM 0.00001 1.6 0.4 2.4 0.2 0.0 0.2

C-5 0.0001 3.5 1.0 4.5 2.1 1.0 3.0

C-5 0.00001 2.9 0.6 3.4 1.5 0.6 1.9

C-10 0.0001 4.5 1.6 6.0 3.1 2.0 4.9

C-10 0.00001 3.9 1.0 4.8 2.4 1.2 3.4

C-20 0.0001 5.5 5.0 10.4 4.5 5.7 10.0

C-20 0.00001 5.0 3.3 8.2 3.8 3.9 7.5

C-40 0.0001 6.8 19.8 26.8 7.2 19.6 26.8

C-40 0.00001 6.5 16.6 23.2 6.5 16.6 23.1

LSD (0.05) 0.14 0.18 0.21 0.14 0.17 0.19

N = 192, NM = 384

G 0.0001 8.5 5.1 13.5 8.8 3.7 12.0

G 0.00001 7.9 2.9 10.7 7.4 2.3 9.3

G-SM 0.0001 5.7 2.3 10.2 2.6 0.3 3.0

G-SM 0.00001 4.6 1.1 7.1 1.3 0.1 1.4

C-5 0.0001 6.3 2.3 9.3 4.5 1.3 5.7

C-5 0.00001 5.4 1.0 6.7 3.5 0.7 4.0

C-10 0.0001 7.2 0.9 7.9 5.8 1.5 6.9

C-10 0.00001 6.4 0.6 6.8 4.7 0.9 5.3

C-20 0.0001 7.7 1.8 9.3 7.2 2.5 9.3

C-20 0.00001 6.7 0.9 7.5 6.0 1.4 7.0

C-40 0.0001 8.1 6.8 14.8 8.5 6.6 14.7

C-40 0.00001 7.2 3.8 10.9 7.1 3.8 10.6

LSD (0.05) 0.13 0.16 0.21 0.17 0.13 0.19

N = 384, NM = 384

G 0.0001 11.0 3.6 14.8 13.6 3.2 16.3

G 0.00001 10.5 1.9 12.5 12.2 2.0 13.7

G-SM 0.0001 9.2 4.5 17.5 7.7 0.9 9.8

G-SM 0.00001 8.1 2.2 13.3 5.6 0.3 6.3

C-5 0.0001 9.3 9.6 21.7 9.4 5.7 16.9

C-5 0.00001 8.4 5.5 15.9 7.5 2.4 10.6

C-10 0.0001 9.9 1.1 11.1 10.0 1.7 11.5

C-10 0.00001 9.1 0.5 9.5 8.7 1.0 9.3

C-20 0.0001 10.0 0.9 10.8 11.4 1.4 12.2

C-20 0.00001 9.0 0.4 9.3 9.9 0.8 10.2

C-40 0.0001 9.7 2.1 11.8 11.4 2.3 13.2

C-40 0.00001 8.6 0.8 9.4 9.5 1.0 10.1

LSD (0.05) 0.13 0.20 0.29 0.18 0.15 0.26

In the C models, the numeral (e.g., C-5) indicates the number of background markers used as cofactors
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NM = 192 to NM = 384 led to an increase in NFP. As

indicated later in the ‘‘Discussion’’, this result needs to be

interpreted with caution given how a true QTL and a false

positive were defined in this study. The NTQ values were

generally highest with the G model. The NTQ values were

generally lower with the G-SM model than with the C

models when NM = 384 markers were used, but not when

NM = 192 markers were used.

There were instances wherein the use of a less stringent

significance level in the C models (p = 0.0001) and a more

Table 2 Control of the type I error rate in simulations where the null hypothesis of no marker-QTL linkage was true for the G, G-SM, and C

models (with a window size of 0 cM) for detecting QTL

N and NM Percentage of non-uniform distributions of p valuesa

G G-SM C-5 C-10 C-20 C-40

N = 96, NM = 192 2 88 4 10 11 68

N = 192, NM = 192 2 100 7 5 17 18

N = 384, NM = 192 0 100 7 5 16 20

N = 96, NM = 384 42 15 23 31 41 13

N = 192, NM = 384 3 41 27 29 59 65

N = 384, NM = 384 2 99 22 25 49 86

In the C models, the numeral (e.g., C-5) indicates the number of background markers used as cofactors. The results are for a 15 QTL, h2 = 0.80

model and for a total of 200 repeats
a Based on a Kolmogorov–Smirnov test for a uniform distribution (p = 0.01)
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Fig. 1 Numbers of true QTL detected and false positives with

different C models (plus sign), the G model (solid squares), and the

G-SM model (open triangles). The results with the G model and

G-SM model are for different significance levels (p = 0.0001 and

0.00001) and genetic models (15 QTL with h2 = 0.80, and 30 QTL

with h2 = 0.70). The results with the C model (window size of 0 cM

only) are for the two significance levels, two genetic models, and four

numbers of cofactors (NCF = 5, 10, 20, and 40). Specific data points

that were not plotted are noted in the text
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stringent significance level in the G model (p = 0.00001)

led to equal NFP values but unequal NTQ values. Consider

the simulation experiment with N = 96, NM = 192, and

L = 30. The NFP was 0.8 when a significance level of

p = 0.00001 was used in the G model or when a signifi-

cance level of p = 0.0001 was used in the C-10 model

(Table 1). Although the NFP values were equal, the corre-

sponding NTQ was slightly but significantly higher in the G

model (3.8) than in the C-10 model (3.4). Likewise, with

N = 384, NM = 192, and both numbers of QTL studied,

the G model with p = 0.00001 led to the same NFP (0.6)

but significantly higher NTQ when compared with the C-40

model with p = 0.0001 (Table 1).

The NFP values were generally lowest with the G-SM

model. Furthermore, the NFP values in Fig. 1 were gener-

ally lower with the C models than with the G model, with

the following notable exceptions: C-40 model with

N = 192, NM = 384, p = 0.0001, and L = 15; C-40

model with N = 192, NM = 384, p = 0.0001, and L = 30;

C-5 model with N = 384, NM = 384, p = 0.00001, and

L = 15; and C-5 model with N = 384, NM = 384,

p = 0.0001, and L = 30.

The variances of NTQ and NFP were of comparable

magnitude across the C, G, and G-SM models (results not

shown). For the simulation experiments with the fewest

QTL (L = 15), fewest markers (NM = 192), and fewest

recombinant inbreds (N = 96), the variances of NTQ across

the 1,000 repeats ranged from 1.6 to 3.3 for the C models,

2.8–3.1 for the G model, and 2.9–3.5 for the G-SM model.

The corresponding variances of NFP ranged from 0.2 to

13.3 for the C models, 2.6–5.6 for the G model, and 1.2–3.3

for the G-SM model.

Control of the type I error rate, as evidenced by a uni-

form distribution of empirical p values when the null

hypothesis was true, was best with the G model, interme-

diate with the C models, and poorest with the G-SM model.

With the G model, less than 3 % of the repeats of the

simulation experiments had non-uniform p values

(p = 0.01), except when a small mapping population

(N = 96) and a large number of markers (NM = 384) were

used (Table 2). In the latter situation, the frequency of non-

uniform distributions of p values increased to 42 %. The

frequency of non-uniform distributions of p values ranged

from 15 to 100 % with the G-SM model and from 4 to

86 % with the C models. With the C models, the frequency

of non-uniform distributions of p values was lower with

NM = 192 markers than with NM = 384 markers.

Discussion

This study compared the use of genomewide markers to

account for background effects (G model) versus the

traditional procedure of using subsets of markers to

account for background effects (C model) in mapping

QTL. The G model is less subjective than the C model, and

the results indicated that the G model is also at least as

powerful, if not more powerful, than the C model.

The results underscored the dependence of C models,

such as CIM (Zeng 1993, 1994; Jansen 1992, 1993) on the

investigator’s choice of number of cofactors (NCF) and

window size for excluding cofactors. According to the rule

proposed by Jansen and Stam (1994), the NCF values

should be NCF B19 for a mapping population of N = 96

recombinant inbreds, NCF B27 for N = 192, and NCF B39

for N = 384. The simulation results indeed indicated that

the use of NCF = 20 or 40 cofactors when the population

size was N = 96 led to the number of false positives

exceeding the number of true QTL detected. On the other

hand, the results also indicated that the QTL Cartographer

(Wang et al. 2006) default of NCF = 5 was too small when

the mapping population was large (N = 384) and given the

L = 15 or 30 QTL controlling the trait in this study.

Furthermore, the results did not support using the default

window size of 10 cM in QTL Cartographer. The number

of true QTL detected was maintained and the number of

false positives decreased when the window size was

reduced to 0 cM. This result was consistent with recom-

mendations by Zeng (1994) and by Lynch and Walsh

(1998, p. 465) to use a window size of 0 cM in CIM.

Consider four adjacent markers in the following order: M1–

M2–M3–M4. In testing for the presence of a QTL in the

M2–M3 interval, including M1 as a possible cofactor by

specifying a window size of 0 cM in CIM is expected to

account for QTL to the left of M1. Likewise, including M4

as a possible cofactor by specifying a window size of 0 cM

is expected to account for QTL to the right of M4. How-

ever, a QTL in the M1–M2 interval or in the M3–M4

interval would not be isolated (Whittaker et al. 1996) and

the effects of QTL in these two flanking intervals cannot be

cleanly separated from the effect of QTL in the M2–M3

interval being tested (Zeng 1994; Whittaker et al. 1996).

In contrast to the C model, the G model circumvents the

need to choose subsets of background markers as cofactors

and the need to choose a window size for excluding

markers as cofactors. As shown in Fig. 1, the number of

true QTL detected was generally higher with the G model

than with the C models across different population sizes

and numbers of markers. This slight increase in power to

detect QTL was accompanied by a slight increase in the

number of false positives, particularly when the mapping

population was small (N = 96). These results suggest that

it might be possible to constrain the G model and the C

models to have similar false-positive rates by specifying

different significance levels for the two models. However,

the larger issue is that if the use of the same significance
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level in the C models and the G model leads to different

numbers of false positives for the same data set, the two

approaches must then differ in their adherence to the sig-

nificance level specified by the investigator.

In particular, when the null hypothesis is true, the

resulting p values are expected to follow a uniform distri-

bution (Murdock et al. 2008). A significant deviation of the

empirical p values from a uniform distribution then indi-

cates a failure of the statistical test to adhere to the spec-

ified significance level. Simulations that constrained the

null hypothesis of no marker-QTL linkage to be true

indicated that the G model generally led to the best control

of the type I error rate (Table 2). However, the G model

failed to adhere to the specified significance level when the

mapping population was small (N = 96) and the number of

markers was large (NM = 384). The accuracy of genome-

wide predictions increases with larger N (Lorenzana and

Bernardo 2009; Heffner et al. 2011; Guo et al. 2012) and,

conversely, poor prediction of background effects due to a

small mapping population is expected to lead to less reli-

able results. When many markers are present on each

chromosome due to a large NM, a small mapping popula-

tion would lead to few degrees of freedom in per-chro-

mosome backwards elimination in the G model. The high

frequency (42 %) of non-uniform distributions of p values

with the G model for N = 96 and NM = 384 was therefore

not unexpected.

As expected, a more stringent significance level

(p = 0.00001 instead of p = 0.0001) reduced both the

number of true QTL detected and the number of false

positives regardless of the model for detecting QTL.

Although the statistical properties of CIM have been well

studied (Zeng 1993, 1994; Jansen 1992, 1993), the simu-

lations indicated that CIM may not always adhere well to

the specified type I error rate if all the QTL are found only

on one chromosome. This result was due to the joint effects

of (1) specifying a fixed number of cofactors rather than a

significance threshold for their inclusion in CIM and (2)

having only 1–2 recombination events per chromosome in

a recombinant inbred (Smith et al. 2008). Suppose a

mapping population of N = 96 has been genotyped with

NM = 192 markers, and all 15 QTL are found on chro-

mosome 1. In this situation, only a few markers on chro-

mosome 1 should suffice as cofactors in CIM, and the

frequency of non-uniform distributions of p values was

only 4 % with the C-5 model for N = 96 and NM = 192

(Table 2). However, increasing the number of cofactors

would lead to choosing some cofactors unlinked to QTL

from the other chromosomes, or to a high level of collin-

earity among the multiple cofactors on chromosome 1.

Either situation would contribute to a high frequency of

non-uniform distributions of p values (e.g., 68 % with the

C-40 model for N = 96 and NM = 384; Table 2).

Extensions of CIM such as inclusive CIM (Li et al.

2007) and multiple interval mapping (Kao et al. 1999) have

been proposed. Inclusive CIM does not require prior

specification of NCF, but instead requires that a significance

threshold be specified for including and removing a marker

as a cofactor. Although simulation results indicated that

inclusive CIM is robust with regards to the significance

threshold for cofactors (Li et al. 2007), no definitive rules

exist for specifying such significance threshold. Multiple

interval mapping builds a multiple-QTL model by fitting

putative QTL as cofactors. As Li et al. (2007) indicated,

multiple interval mapping avoids pitfalls associated with

CIM but introduces other pitfalls due to complexities in the

model selection procedure. Li et al. (2007) found that

different model selection methods in multiple interval

mapping led to different numbers of QTL detected.

The power to detect QTL was lower with the G-SM model

than with the G model. As previously indicated, the G model

involved backward elimination on a given chromosome after

adjusting for genomewide marker effects on the other

chromosomes. In contrast, the G-SM model involved single-

marker analysis after correcting for genomewide marker

effects at the other (NM - 1) markers. The reduced power in

the G-SM model may be attributed to linked markers cap-

turing a portion of the effect of the marker being tested for its

association with a QTL. Furthermore, the high frequencies of

non-uniform distributions of p values (Table 2) indicated

that the G-SM model did not adhere well to the specified type

I error rate. The use of the G-SM model over the G model is,

therefore, generally not recommended and, at best, the G-SM

model should be used only as an exploratory method. In

particular, if the number of markers on a chromosome

approaches or exceeds N, the per-chromosome backward

elimination procedure in the G model will fail because of a

lack of degrees of freedom. In this situation, a possible

approach is to use the G-SM model at a relaxed significance

level in preliminary screening for marker–QTL associations

along a chromosome. A reduced set of markers on the

chromosome can then be subjected to G model analysis.

The definitions of a true QTL detected (i.e., a QTL with

one or both flanking markers declared significant) and of a

false positive (i.e., a significant marker not flanked on

either side by a QTL) were the same as those in a previous

study (Bernardo 2004). Given this definition, having more

markers may seem to lead to fewer true QTL detected or to

more false positives (Fig. 1). Suppose marker M1 is at the

1 cM position, a QTL is at the 6 cM position, and marker

M4 is at the 12 cM position. Both M1 and M4 are then

found significant. In this situation, a true QTL is detected

and neither M1 nor M4 is a false positive. Now suppose the

number of markers is increased and, in addition to M1 and

M4, marker M2 is at the 4 cM position and marker M3 is at

the 8 cM position. Further suppose that M1, M2, and M3 are
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found significant. In this situation, M1 is now declared as a

false positive because it does not immediately flank the

QTL. Or, suppose M1 and M4 are found significant whereas

M2 and M3 are nonsignificant. In this situation, which

could arise if not enough recombinations occurred between

M2 and M3, both M1 and M4 are declared as false positives

and the QTL is declared undetected. These examples show

that while the definitions of a true QTL detected and of a

false positive led to a straightforward means for comparing

the results with the C, G, and G-SM models, comparisons

are best made under the same number of markers.

Furthermore, the simulation experiments in this study

did not involve interval mapping, but instead relied on tests

of the significance of effects of the markers themselves. As

illustrated in the examples in the preceding paragraph, this

approach led to a straightforward means of interpreting the

results. In addition, arguments have been raised against the

continued need for interval mapping procedures (F. van

Eeuwijk 2011, personal communication). When interval

mapping and CIM were proposed in the 1990s, marker

technologies available at that time (e.g., restriction frag-

ment length polymorphisms and simple sequence repeats)

enabled mapping populations to be genotyped with mark-

ers that were typically spaced 10–15 cM apart (Bernardo

2008). However, developments since the 2000s in high-

throughput genotyping with single-nucleotide polymor-

phisms have led to the availability of closely spaced

markers (Bhattramakki and Rafalski 2002; Hyten et al.

2008). If markers are spaced, say, 3 cM apart, simple tests

for QTL effects could be done at the marker positions (i.e.,

every 3 cM) instead of interval mapping at putative QTL

positions every 1–2 cM.

Lastly, genomewide marker effects were calculated by

RR-BLUP (Meuwissen et al. 2001; Bernardo and Yu 2007)

in this study. Empirical results for several plant species

have consistently shown that genomewide predictions with

RR-BLUP were as good, if not better, than predictions with

more complex Bayesian methods (Lorenzana and Bernardo

2009; Heffner et al. 2009; Lorenz et al. 2011; Asoro et al.

2011; Guo et al. 2012). If the trait is controlled by rela-

tively few QTL, it may be advantageous to use a Bayesian

genomewide prediction approach that constrains many

markers to having effects of zero or a partial least squares

approach (van Eeuwijk et al. 2000, 2002) that extracts

latent factors that account for as much background varia-

tion as possible. Such topic needs to be studied.
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